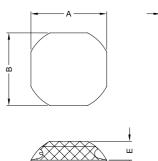
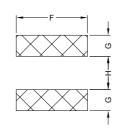
С

Powder coating

SPH4012FT SERIES


1. PART NO. EXPRESSION :


SPH	4012	2 F T -	1 R 2	ΝΖF
(a)	(b)	(c)(d)	(e)	(f)(g)(h)

(a) Series	code
------------	------

- (b) Dimension code
- (c) Powder coating type
- (d) Taping package
- (e) Inductance code : 1R2 = 1.2uH
- (f) Tolerance code : $M = \pm 20\%$, $N = \pm 30\%$
- (g) Z : Standard part
- (h) F : RoHS Compliant

2. CONFIGURATION & DIMENSIONS :

Recommended PCB Pattern

lln	it:m/m	
011	11.111/111	

A	В	С	D	E	F	G	Н
4.0±0.2	3.9±0.2	1.2 Max.	1.6 Тур.	1.15 Typ.	3.7 Тур.	1.2 Typ.	1.6 Тур.

3. MATERIALS :

- (a) Core : Ferrite
- (b) Wire : Polyurethane Enamelled Copper Wire
- (c) Solder : M35E
- (d) Coating : Powder Coating

NOTE : Specifications subject to change without notice. Please check our website for latest information.

03.02.2010

SPH4012FT SERIES

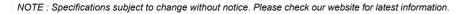
4. GENERAL SPECIFICATION :

a) IDC1 : Based on inductance change $(\Delta L/Lo: \leq 30\%)$ @ ambient temp. 25°C

- b) IDC2 : Based on temperature rise (Δ T: 40°C Typ.)
- c) Rated Current : IDC1 or IDC2, whichever value is lower
- d) Storage temp. : -40°C to +105°C
- e) Operating temp. : -40°C to +105°C $\,$ (include self temp. rise)
- f) Resistance to solder heat : 260°C 10secs

5. ELECTRICAL CHARACTERISTICS :

Part No.	Inductance (uH)	Test Frequency (Hz)	RDC (mΩ) ±20%	IDC1 (A)	IDC2 (A)
SPH4012FT-R47NZF	0.47±30%	0.1V/100K	35	3.50	2.50
SPH4012FT-1R2NZF	1.2±30%	0.1V/100K	60	2.20	1.50
SPH4012FT-1R5NZF	1.5±30%	0.1V/100K	75	2.00	1.35
SPH4012FT-2R2NZF	2.2±30%	0.1V/100K	90	1.65	1.20
SPH4012FT-3R3NZF	3.3±30%	0.1V/100K	130	1.20	0.98
SPH4012FT-4R7MZF	4.7±20%	0.1V/100K	140	1.05	0.96
SPH4012FT-6R8MZF	6.8±20%	0.1V/100K	180	0.90	0.84
SPH4012FT-100MZF	10±20%	0.1V/100K	240	0.74	0.77
SPH4012FT-470MZF	47±20%	0.1V/100K	1000	0.35	0.37



NOTE : Specifications subject to change without notice. Please check our website for latest information.

03.02.2010

6. RELIABILITY & TEST CONDITION :

ITEM	PERFORMANCE	TEST CONDITION		
Mechanical				
Substrate bending	ΔL/Lo≦±10% There shall be no mechanical damage or electrical damage.	The sample shall be soldered onto the printed circuit board in figure 1 and a load applied until the figure in the arrow direction is made approximately 3mm.(keep time 30 secs) $\begin{array}{c} \hline 100 \\ \hline 90 \\$		
Vibration	ΔL/Lo≦±10% There shall be no mechanical damage.	The sample shall be soldered onto the printed circuit board and when a vibration having an amplitude of 1.52mm and a frequency of from 10 to 55Hz/1 minute repeated should be applied to the 3 directions (X,Y,Z) for 2 hours each. (A total of 6 hours)		
Solderability	New solder More than 90%	Flux (rosin, isopropyl alcohol{JIS-K-1522}) shall be coated over the whole of the sample before hard, the sample shall then be preheated for about 2 minutes in a temperature of $130 \sim 150^{\circ}$ C and after it has been immersed to a depth 0.5mm below for 3 ± 0.2 seconds fully in molten solder M705 with a temperature of $245\pm5^{\circ}$ C. More than 90% of the electrode sections shall be cowered with new solder smoothly when the sample is taken out of the solder bath.		
Resistance to Soldering heat (reflow soldering)	There shall be no damage or problems.	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $		

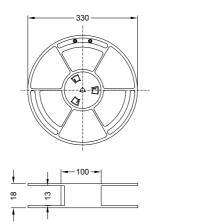
RoHS Compliant 03.02.2010

SPH4012FT SERIES

SPH4012FT SERIES

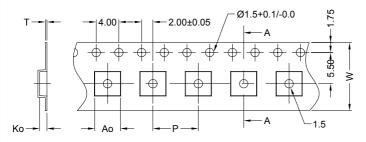
6. RELIABILITY & TEST CONDITION :

ITEM	PERFORMANCE	TEST CONDITION			
Electrical Characteristics Test					
Dielectric withstand voltage	There shall be no damage or problems.	AC 100V voltage shall be applied for 1 minute across the top surface and the terminal of this sample			
Temperature characteristics	ΔL/L20°C≦±10% 0~2000 ppm/°C	The test shall be performed after the sample has stabilized in an ambient temperature of -20 to +85°C, and the value calculated based on the value applicable in a normal temperature and normal humidity shall be $\Delta L/L20°C \leq \pm 10\%$.			
High temperature storage	ΔL/Lo≦±10% There shall be no mechanical damage.	The sample shall be left for 96±4 hours in an atmosphere with a temperature of 85±2°C and a normal humidity. Upon completion of the measurement shall be made after the sample has been left in a normal temperature and normal humidity for 1 hour.			
Low temperature storage	ΔL/Lo≦±10% There shall be no mechanical damage.	The sample shall be left for 96±4 hours in an atmosphere with a temperature of -25±3°C. Upon completion of the test, the measurement shall be made after the sample has been left in a normal temperature and normal humidity for 1 hour.			
Change of temperature	ΔL/Lo≦±10% There shall be no other damage of problems	The sample shall be subject to 5 continuous cycles, such as shown in the table 2 below and then it shall be subjected to standard atmospheric conditions for 1 hour, after which measurement shall be made.			
		TemperatureDuration-25±3°C30 min.1(Thermostat No.1)			
		Standard 5 sec. or less 2 atmospheric			
		85±2°C3(Thermostat No.2)30 min.			
		4 Standard 5 sec. or less No.2→No.1			
Moisture storage	ΔL/Lo≦±10% There shall be no mechanical damage.	The sample shall be left for 96±4 hours in a temperature of 40±2°C and a humidity(RH) of 90~95%. Upon completion of the test, the measurement shall be made after the sample has been left in a normal temperature and normal humidity more than 1 hour.			

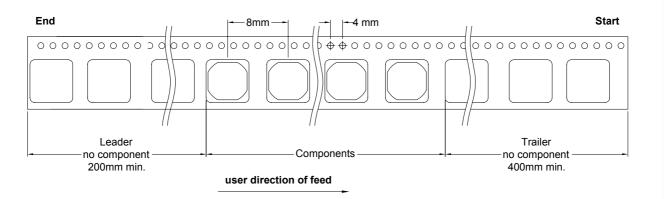

NOTE : Specifications subject to change without notice. Please check our website for latest information.

03.02.2010

SPH4012FT SERIES


7. PACKAGING INFORMATION :

7-1. Reel Dimension (mm)



7-2 CARRIER TAPE DIMENSIONS (mm)

Ao	Во	Ko	W	Р	Т
4.3mm	4.15mm	1.5mm	12mm	8.0mm	0.3mm

7-3 TAPING DIMENSIONS (mm)

7-4 QUANTITY

3000pcs/Reel

The products are packaged so that no damage will be sustained.

NOTE : Specifications subject to change without notice. Please check our website for latest information.

03.02.2010